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In conventional calculation schemes for turbulent flow near walls, a
substantial number of mesh points are required to resolve the intense
profile variations in the near-wall regian. In the present method, the
velocity distribution across the entire wall layer is represented by
analytic mnbedded functions: tha outer-layer flow is caleulated subject
to the condition that the numerical solution blends smoothly into
the embedded wall-layer functions. As the computation proceeds
downstream, the wall shear stress and the wall skew angle are obtained
from algebraic formuiae derived from a general asymptotic analysis. Itis
shown that on the order of a 50% reduction of mesh paints may be
realized without any degradation in the accuracy of the computed
results. The present methodology is very robust and capable of
cafcutating bi-directionally skewed cross-stream velocity profiles.
‘€ 1993 Academic Press, Inc,

1. INTRODUCTION

itis well known that attached turbulent boundary layers
are double-structured, consisting of a relatively thick, effec-
tively inviscid outer layer and a thin viscous wall layer near
the surface. In the caiculation of such flows, a highly refined
mesh is necessary to resolve the intense gradients in the wall
layer, while a relatively coarser mesh is adequate farther
away. In typical calculations [1-37, 50% of the total mesh
points may be devoted to the wall layer. The central idea in
the embedded-function approach is to take advantage of the
similarity structure that exists in the wall layer for attached
turbulent Hows, thereby allowing representation of the
velocity profiles across the entire wall layer by analytic
embedded functions. The outer-layer flow 1s calculated by
requiring that the numerical solution merge to the correct
asymptlotic form near the wall layer. The outer-layer
numerical solutions and wall-layer embedded functions are
then maiched asymptotically to obtain compaosite velocity
profiles that are valid across the entire boundary layer,
while the wall shear stress is caleulated from algebraic
relationships obtained as a result of the matching. Because
the wail-layer flow is not computed, a considerable saving in
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storage and an increase in computational efliciency is
possible, The method has previously been developed for
two-dimensional [4] and plane-of-symmetry [5] turbulent
boundary layers; in these situations the embedded-function
method utitized about half the mesh points of a conven-
tional caleulation procedure (which computes the flow all
the way to the wall), with no degradation in accuracy
[4, 5]. Note that the embedded-function method bears a
similurity to so-called wall-function methods [6], but the
implementation of these two methods differs considerably
[4]

Here, the embedded-function method is developed for
fully three-dimensional lows, Three-dimensional flows are
inherently more complicated because, along with the wall
shear stress, the wall skew angle must also be obtained as
part of the numerical solution. For simplicity, attention will
be focused here on incompressible boundary-layer flows,
although the methodology has been applied to compressible
flows [7] and can, in principle, be utilized with full
Navier-Stokes solution methods. Note that the main intent
here 15 to demonstrate the applicability of the embedded-
function methodology to three-dimensionat flows within the
context of a given turbulence model, as opposed to trying to
infer a *best turbulence model” through direct comparisons
with experimental data.

Al this stage, it is useful to delineate the salient features
ol a threec-dimensional boundary-layer flow which is
conveniently described in the streamline coordinate system
shown in g 1, The streamwise direction v, 18 defined by
the cxlernal streamling at the boundary-layer edge, and the
cross-stream direction v, is perpendicular to v, ; the vector
X¥={(x,, x,) describes a location on the solid boundary. The
normal coordinate x, completes the orthogenal coordinate
system. Due to the curvature of the external streamline, a
cross-stream pressure gradient is set up which is positive lor
the case shown in Fig. 1. As a consequence, the velocity vec-
tor rotates from the local external streamline in a direction
of decreasing cross-stream pressure gradient as the wall is
approached. Therefore, the cross-stream velocity increases
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FIG. 1. Schematic of a three-dimensional turbulent boundary layer.

from zero at the boundary-layer edge, reaches a maximum,
and then decreases back to zero at the wall to satisfy the no-
slip condition. In contrast, the behavior of the streamwise
velocity is qualitatively similar to that in a two-dimensional
boundary layer. The direction of the limiting streamline at
the wall is determined by applying L’'Hopital’s rule to the
ratio u,/u, as x;— 0. In general, the angle between the
tangents to the external streamling and the limiting
streamline at the wall is nonzero; therefore, the velocity
vector rotates through what will be referred to as the wall
skew angle. Thus the velocity profile is said to skew and this
feature is a distinct characteristic of a three-dimensional
boundary-layer flow.

2. GOVERNING EQUATIONS

Consider a three-dimensional turbulent boundary-layer
flow in which U*; and L¥, are the representative speed and
length, respectively; the Reynolds number is defined as
Re=UX, L% /v* where v* is the kinematic viscosity and
is assumed constant. ‘In dimensionless variables, the
boundary-layer equations in a streamline coordinate system

are as follows [7]: The continuity equation is

a 5, Oy
é; (hzul)‘*‘az (hyus)+hyhy (3x370’

(1)

and the x,- and x,-momentum equations are given by
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u; fu, UgaUe+aT13

Livm 2 _

B, ox, Kyuyuy + Kyuy Foox, | oy’ (2)
u, ou ot
hjaxi—Kluluz-!-Kzuf:KzUﬁ-i—éf, (3)

respectively. The operator on the left sides of (2) and (3) is

Hfa_ula+U2a +u_a_
h,0x, h,dx, hydx, = éxy

(4)

where h, and ki, are the metric coefficients in the x, and
x, directions, respectively, and K, and K, are the corre-
sponding curvatures defined by

L

' ahy
" hhydx) 2=

ChhaOxy

(5)

In accordance with the usual boundary-layer formulation
[7], the metric coefficient in the normal direction /, is taken
to be unity, and /, and 4, are independent of x;. The total
shear stresses, 7,; and 1,;, are given by

L o
Re dx;’

(6)

T3=0pn+

where o,, and o,; are the dimensionless turbulent shear
stresses. Both u; and u, vanish at the wall and v, - U,
#; > 0 at the boundary-layer edge. Note that, once the
external flow field is specified, the metric coefficients and the
curvatures are all uniquely determined [7].

3. ASYMPTOTIC STRUCTURE

An essential step in the formulation of a rational calcula-
tion procedure is a derivation of the appropriate asymptotic
structure in the limit of large Reynolds number. In the
embedded-function method, the no-slip boundary condi-
tion at the wall is to be replaced by asymptotic conditions
reflecting a generalized functional form for the velocity
components near the wall but still within the outer layer.
In addition, alternative formulae must be developed to
calculate the wall shear stress and wall skew angle, which
are computed in a conventional scheme by evaluating
velocity gradients at the wall. Such information can be
obtained from a general asymptotic analysis of the three-
dimensional turbulent boundary-layer equations [ 7-9]; the
relevant results are briefly summarized in this section.

The friction velocity is defined in terms of t,, the
nondimensional magnitude of the wall shear stress, by
U, = \/'c_w; as in two-dimensional boundary layers [ 107, the
ratio u./U, is small for large Reynolds numbers, The wall
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skew angle 8, scales on the friction velocity in the limit of
large Reynoids number [7-9] and a scaled wall skew angle
f#, may be defined by

tan 9, u,cos

* 3 *
U, U

g (7

o

Here u, is the scaled friction velocity in the local streamwise
direction and u,, — O while @, is O(1) as Re ~ co. The scaled
outer-layer variable y and the wali-layer variable y* are
defined by

’Izﬁ

A y+:Reu1x3:

(8)

s
&

where A, is a measure of the local boundary-layer thickness
and the appropriate specification of 4, is discussed in
Section 5.

Consider the asymptotic behavior for the velocity
distribution first. In the wall layer, both velocity com-
ponents are small and have the forms [7, 9]

uleeu*U"'(y*)_{_ .
uZIUeuiB*U+(y+)+ |

(9a)
(9b)

where the profile function &/ * must vanish at y* =0 and
conform to the law of the wall

1
U*~;log yt+C,  as y*t oo, (10)

at the outer edge of the wall layer. Here x and C, are the von
Karman and log-law constants (assumed to be 0.41 and 5.0,
respectively). Note that the cross-stream velocity in (9) is
O{u, ) smaller than the streamwise component. In the outer
layer, the appropriate expansions for the velocities are

(7,9]

JdF, , 0F, }
= ! kit ST 1
i, Ue{l+u* o + Uy, o + , (11a)
oG, G,
Uy = Ueu*ﬂ* {E+M*E+ }, (11b)
where
aF G
6_11[~_]0 n+C,, %?1~1 as n-0 (12a)
aa
%wC,, —2~llogr]+C0 as y—0. {12b)
on on kK

Here C, and C, are functions of X = {x,, x,) to be found,
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which generally depend on the specific outer-layer tur-
bulence model used. With the asymptotic forms in (10) and
(12}, it may be easily confirmed that the velocities in (9) and
(11) match if the condition

IO |
—=—log(Reu, 4,)+C,~C,—u,C, + -+ (13)
U, K

is satisfied; this match condition provides a relation between
the outer scale 4, and the wall shear stress.

Next, consider the total shear stress. Substitution of (9)
and (10) into (2} and (3), along with integration and subse-
quent evaluation at large y ™, vields [9]

1 U,aU, log? y*
r13~ufc059“.—Reurmy+ {14.“1_}\_2_}_,....
as y* — o0, (14a)
1
rz3~u3u*9*c058“.——Rc thUfy*'
10 2 L+
X{1+ui gxzy }4— as yT o oo, (14b)

Once again, note that the ratio of the cross stream to
streamwise shear stress is of O(u, ) to leading order. In the
outer layer, the form of the expansions for total shear
stresses is suggested by (14) and given by

ta=uicos 0, {T (% n)+u, Tofx,m)+ -}, (152)

ta=uf, cos 0, {T(x, ) +u, Tt m+ -} (15b)

In order to match the asymptotic form in (14), it may be
verified [9] that

lo log?
To~1-28, 180 e, TR
K K
as #—9, (16)
- 1 - log?
T1~2y&5'1+..., T2~1+},n ng ’?+_._
as n—0 (17)

Here B, and §, are pressure-gradient parameters in
the streamwise and cross-stream directions, respectively,
defined by

4, U, eU A
= [ e e, L= — a K UZ, 18
IBJ U(,u., hl axl B Ueut 2V e ( )

and the parameter y is defined according to
¥= _IBH/B*‘ (19)
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[t should be emphasized that (7)-(19) are general results denote the total viscosities in each of the streamwise and

independent of a specific turbulence-closure assumption.

4. FORMULATION

For computational convenience, normalized velocities
are defined by

(20)

and a generalization of the two-dimensional streamwise
Levy—Lees variable is introduced by [, 2, 11]

Gi=) Zodni Zolr) = UMl
1)

n= XB/AUE

with the cross-stream’ variable left unchanged so that
&, =x,. Although the embedded-function method may
be adopted with any self-consistent two-layer turbulence
model, a simple algebraic model of the form

_ iy

_ Ou,
T1a=#& .’

023 =83 _ﬁr s
X3

(22)

is used here (for illustrative purposes), where &, and &,
represent eddy viscosities in the streamwise and cross-
stream directions, respectively.

The governing equations (1)-(3) in computational coor-
dinates are then of the form

av oF aG
—+ A A+ AF+A,G=0, 23
o P EE e, A )
J BF} eF or oF
e VA F— 4,6
(3?7{ ]5’? on ' ¢, 2 d¢,
+ A1 — F)— 4,6° =0, (24)
3 oG oG éG oG
e, 2l v P 4,68 v 4,1 F?
511{”8'1} L AR )
A, G — (A — As) FG =0, (25)
where V is defined by
AU [ h an h, o
P=—o—e) "1 = it Bhti e O
T T noke el

The coefficients 4,—4, are given in the Appendix. The
outer-layer length scale 4, is determined at each location in
a manner to be described in Section 5. In addition, &, and &,

cross-stream directions, respectively, with

g;=¢,+Re™ 1, i=1,2, (27)
and the total stresses are given by
ou Ju
R e (28)

In the external streamline coordinate system, the boundary
conditions at the edge are
F-1, G—-0 as #— 0. (29}
The performance of the embedded-function method will
be compared with a typical conventional method [1, 2, 11]
whose main features are summarized here. The boundary-
layer integrations are started in laminar flow and here the
appropriate normal variables are

— Uehz
=—+-2 /Rex,,
BV

In the full-calculation scheme [1,2,11], computations
are performed all the way to the wall, where the no-slip
condition requires

V=JReV.

(30)

F=G=90 at =0 (31)
A simple formula capturing the essence of a Cebeci-Smith
eddy-viscosity turbulence model [12] is used here, In the
outer layer, close to the boundary-layer edge,

g, =6,=U,6*K,  K=00168, (32a)
and in the inner region,
1
8= 8= "3 D* /(0 /0x;)° + (Qua/0X,) + o, (32b)

where x is the von Karman constant and D is the Van Driest
damping factor given by

y+
D=1- ——1 13
The quantity §* in (32a) is defined by
=] (1= P+ G} d,. (34)
0

so that its value is rotationally invariant in a three-dimen-
sional flow.
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Now consider the embedded-function method. To
facihitate comparison, a similar model to (32) is adopted;
however, since calculations are now performed only in the
outer layer, an inner-region model is no longer necessary. A
simple choice for an outer-layer model that is consistent
with the asymptotic structure described in Section 3 and
with (32) is

K, N> Noms
g=U,80*{xn (35)
] 7?=<Jlms
ey
for i=1, 2 where
U, o* Ky,
’?*—Aour’ nnr_ K (36)

The models (32) and (35) are the same in each coordinate
direction and are said to be isotropic; the validity of such
an assumption has sometimes been questioned (see, for
example, the discussion in Ref. [9]), although an isotropic
model appears to be desirable for the wall layer [9]. In
principle, a nonisotropic model for the outer region could
easily be adopted by choosing different values for the
outer-layer constant K in the streamwise and cross-stream
directions. Because the intent of the present study is to
demonstrate embedded-function methodology within the
context of a general class of turbulence models rather than
address the issue of the best turbulence model, isotropic
models (32) and (35) are used here for simplicity; as
discussed in Ref. [97], such models yield a wall-layer flow
which is coilateral to leading order in the limit as Re — co.

Once a turbulence model is adopted, the asymptotic
behavior of the velocity components may be refined to
include effects of pressure gradient in the limit of small ».
Substitution of (15}-(17}, (20), (35), and (36) into (28) with
subsequent integration gives

F~1+u*{%logn+co—2ﬁ5"l:2gn+...}
FYERYL IT
as n—0, (37)
G~u*8*{1+2 nlogn | }
+u18*{ logn+C, +y lg Ty --}+
as #—0. (38)

The formulas in (37) and (38) represent refined versions of
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the asymptotic forms in (11) and (12) to include pressure-
gradient terms near the surface; this refinement is only
possible, in general, once a specific turbulence-closure
assumption is made,

5. NUMERICAL PROCEDURE

First consider the procedure adopted to determine 4,
the outer-layer length scale. Let #, denote the value of 4 at
the first mesh point off the wall in the embedded-function
method (see Fig 2). From (8), the wall variable ™ is
related to n by

1

=yt
=Y 4 Re (39)

Let ! denote the value of 3", where the matching of the
outer-region numerical solution to the embedded function
takes place. In the present study, v, was chosen to be
approximately equal to 120. In practice, the specific value of
v} used in the calculation has no effect on the performance
of the method or on the results, provided y ) is large.
However a larger value of y} yields enhanced savings in the
number of mesh points used. By insisting that the match
take place at a constant value of both y* and # at
all streamwise and cross-stream locations, the outer-
layer length scale may be conveniently defined from (39)
according to

+ 1
Aa=f_”_’. \
n, u, Re

(40)

as in the two-dimensional application of the method [4].
The important advantage of using (40) to determine 4, is

FIG. 2. Schematic representation of the change in the mesh: (a})
original mesh at £, =&, ,,_; (b) new mesh after switchat {; =¢, ..



THREE-DIMENSIONAL TURBULENT BOUNDARY LAYERS

that the mesh for # is identical at all locations {£,, £,) within
the boundary layer.

Next, consider the boundary conditions. In addition to
(29), conditions near the surface are provided by the
asymptotic results (37) and (38) for small . Let /5 and f,
denote values of F at the locations #, and #,, where 5,
denotes the second point from the wall. Since both 4, and
4 are small, {37) may be used to represent F at these two
locations and therefore

1 - 'Jl
f3—f2=u—:I0g (ﬁ)_zﬁju* {’73 0gHs 2?]__ ognz}

H2 K

—ﬁ,,-ui {’13 log” 5 _3'12 log? ’?2}. (41)

K
The advantage of this point—slope representation for small
1 is that the unknown functions C, and C, do not appear
in (41). Similarly, for the cross-stream velocity, from {19)
and (38),

ll2 g lo — lo
83_82="¥10g (ﬁ)+2}’u*9* {’13 =D 2'12 gﬂz}
K P K

+ oy o

2 0, {n;logz Hy— "2 1082 ’12}, (42)

where g, and g, are the values of G at x4 and #,, respec-
tively. Finally, upon substitution of (37) and (38) into the
continuity equation (23), it may be shown that

oF oG
V“‘—'T{Ala_él"‘Aza_éz‘*'AsF"‘f%G} as n—0

(43)

and this relation is used to evaluate V at #, in terms of n,,
f3, €5, as well as the streamwise and cross-stream gradients,
which are computed using simple backward differences. By
using values obtained from the previous iterate, the right-
hand side of these equations may be evaluated. In a general
iterative procedure at any streamwise location, estimates of
u, and 8, from the previous iteration are used to evatuate
the right sides of (41) and (42); these relations are readily
incorporated [7] into a solution algorithm for the
difference approximations to (23)-{25).

In the full-calculatioh method [1, 2], the initial profiles
used for the velocity are self-similar laminar solutions
at a leading edge or along a line of attachment of the
external flow. The calculations are then continued in the
downstream direction through the laminar and transitional
regions into the fully turbulent zone. For the transitional
region, a simple model due to Dhawan and Narasimha
[1, 13] was used. The present embedded-function method
pertains to a fully developed turbulent flow, and here the
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full-calculation method is used to supply initial velocity
profiles within the fully turbulent zone just downstream of
the end of transition. The caiculation is switched from the
full-calcutation method at station &, ,,._, to the embedded-
function method at £, ,, as suggested schematically in Fig. 2..
An initial value of 4, must be specified along each external
streamline and a convenient choice is

5%
4,=— at
iy

€]=§],m71) (44)

which is the outer length scale associated with self-similar
solutions [7-97. This choice for 4, fixes n, at the initial sta-
tion along each external streamline (for a selected value of
¥,5) and subsequent values of 4, downstream are computed
from (40). At the switchpoint &, ,,_,, the new mesh in # is
determined from the definitions of # and 7 given by (8) and
(30), respectively; this gives

n=1.25,/Re(1/Uh; 4,), (45)
where A4, is obtained from (44). All original points below
n=n, are no longer needed and are discarded as indicated
schematically in Fig. 2.

In general, some conditions are also required in the cross-
stream direction. The flow configurations used in this study
contain a plane of symmetry, and it is useful to outline the
special approach used there. Denoting the symmetry plane
by x, =0, G vanishes there but the quantity G’, defined as

1 du,
T U,h, 8x,

d

1
=0 hy Ox,

G‘

) (46)

x2=0

does not. The solution develops independently of the rest of
the boundary layer along x, =0 and, by taking G =0, the
special forms of the continuity and the streamwise equations
{1} and (2) are easily obtained; the cross-stream equation is
obtained from (3) by noting that G~ x,h,G’. In this
manner G’ replaces G as the unknown in the cross-stream
momentum equation; the resulting equations are similar to
the full three-dimensional case (see the Appendix). The
plane-of -symmetry solution procedure [ 5] is similar to that
for the full three-dimensional flow. Near the symmetry
plane 8, ~x,h, 5, and 8, ~ x, 1,8, If g} and g} denote the
values of ¢ at #; and r,, respectively, it is readily inferred
that a numerical approximation to the asymptotic
boundary condition for G is given by (42), with g5, g5,
and £, replaced with their primed counterparts. On the
symmetry plane, the parameter 7 is now given by

- i
y=Lim{ —tal_ _Bn
’ TE{ 0 0,

#

(47)



208

The numerical method used [2, 7] for the outer laver is
second-order accurate in Axn and first-order accurate in 4¢
and 4£,. The solution is advanced in a step-by-step manner
in the £, direction; for the cross-stream equation (25), a
simple forward or backward difference [7] is used for
0G/dE,, depending on the sign of & at that mesh point. At
a given station (£,, £,;), a direct solution of the difference
equations produces current estimates of F, &, and ¥ across
the entire boundary layer and values of the skin friction u,
and wall skew angle 8, are obtained iteratively as follows.
The asymptotic forms for F and G for small » are given by
(37) and (38), but both C, and C, are unknown at this
stage. However, by using the velocity-match condition given
by (13}, the values of F and G at #, may be written as

1 1. logn
fomuy {1 log 3+ C =, TR

x{2+u?*10g qz}, (482)
1 lo
g =ull, {;log Yo+ C,}—u*ﬁnﬂ%
H
x {2 +7*log nz}. (48b)

The pressure-gradient parameters defined by (18) are
evaluated using the previous estimate of #, and 4,; conse-
quently, new estimates of v, and &, are evaluated directly
from (48) and u, and A, are obtained from (7). This proce-
dure is a nested iteration and is repeated until convergence
is obtained; in practice, one pass is usually adequate at each
station.

The quantity 3* appears in the turbulence model (cf. (32)
and {35)) and hence must be evaluated at each iteration.
The definition of 8* in (34) may be expanded as

5% = (Re u, )~ j (1= JF21 G2} dy*
Q
+a,[ - /FiG an,
H2

(49)

where the first and second integrals represent contributions
to é* from the wall and outer layers, respectively. With the
definition of F and G in (20) and the wall-layer expressions
for the velocity components in (9}, (49) gives

5*=(Reur)“{y;§—u*J"m Urdy* + }
)

+Anj°° (1— JF+ G} dn,
H2

(50)
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where the first integral is accurate to O} and the second
is obtained numerically from the current estimates of the
outer-layer velocity profile distributions. For the wall-layer
model for I/ ¥ adopted in this study, the first integral in (50)
may be approximated by its asymptotic form for large
and is given by [4, 10]

+

["u dymfxﬁ {log v} —1}+C,y: —669. (51)
0

With the current estimates of u,, 8,., and 5%, the boundary
conditions in (41)-(43) are reevaluated and the turbulence
model updated; the iterative procedure, at each station
and along each line of constant £, is continued until
convergence is realized.

A composite profile for the streamwise velocity u,
is obtained in the usual way by adding the outer- and
wall-layer solutions and subtracting out the common
contribution according to '

= U )+ Fin) —uy U, (52)

&

where U, is the common contribution expressed in terms of
the wall-layer variable by

1
U.=-log y" +C.. {53)
K

The numerical solution F is known only for = #,, but for
small #, F' may be continued analytically into the wall layer
by using the asymptotic formn (37). Using (13), (37),
and {52), it is easily shown that the velocity for  <y,, or,
equivalently, for y* < y* may be written

u cpay_ p HloR7 Uy
S {Ur =g TR o],

&

<M (54)

This representation is valid for large y* but is also a
reasonable [7] approximation across the wall layer; a
higher-order term (reflecting the influence of pressure
gradient) is needed to complete the wall-layer solution [7].
In a similar way, the composite profile for u, is

220, Uy )+ Gl — L0, U,

T (55)

e

for values of n2#n,. On the other hand, for n<#,, G is
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replaced by the asymptotic form given in (38) which results
in the approximate representation in the wall layer:

Uy
UE

logn u
=u,8, {H*U+(}’+)+Tn e {2+?*logn}},

n<t,. (56}
Note that representations (54) and (56) are utilized in this
study only to plot the results very close to the wall. Finaliy,
a formal composite construction for the total streamwise
and cross-stream shear stresses is not necessary since these
quantities are regular at the wall and are obtained directly
from (15)-(17).

6. RESULTS AND DISCUSSION

The embedded-function method has been applied to
the calculation of the turbulent boundary-layer flow for a
number of external flows [7]; here, results are presented for
the situation having a symmetry plane shown in Fig, 3,
where a boundary layer on a flat surface encounters a wedge
shape. An analytical solution for the external flow is easily
obtainable for this example and details regarding the
calculation of the metrics and curvatures are given else-
where [7]. Calculations were carried out for several sets of
mesh sizes as a check on the accuracy, but for the results
reported here, a uniform mesh is chosen to discretize the
wall surface with 101 and 21 mesh points along the
streamwise and cross-stream directions, respectively. Thus
calculations were carried out along 20 individual external
streamlines outboard of the plane of symmetry. In the

FIG. 3. Schematic of a flow configuration consisting of a flat plate
with an attached vertical-wedge half-angle x=230° located farther
downstream.

581/109/2-5
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fuli-calculation method, for the normal variable 7, a
“telescoping”™ mesh-point system is chosen, viz.,
ﬁn:ﬁn—l'i-a(ﬁn—l—ﬁn—Z)’ H=’3,n (57)

max?>=
with

. — 7, =0.001, o=1.041, A, =210, (58)
All reference quantities are evaluated at the upstream
leading edge of the flat plate and the working medium
is assumed to be air. Upstream conditions are assumed
to be given by pX,=2117 Ibf/ft* and T*;=600°R; using
the perfect gas law and the Sutherland relation [14],
the corresponding density and absolute viscosity are
pk.=0.0662 1bm/ft* and u¥;=1345x 1077 lbm/fts. The
reference velocity and length are chosen to be U¥%;=
600 ft/s, L¥;=10ft, and this yields a Reynolds number of
Re =2.96 x 107. Transition is assumed to begin and end at
streamwise Reynolds numbers Re,=Re U,x; of 5x10°
and 1.5x 10° respectively. The embedded-function algo-
rithm is then initiated at the upstream edge of the fully
turbulent zone, but both schemes are continued to enable
comparison of the calculated results. Consequently, the
embedded-function results are shown from x, = 0.35 which
is the approximate location of the end of transition. The
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FIG. 4. Streamwise variation of the friction velocity for the wedge flow
for five selected cross-stream locations: - - - full calculation; — — — embedded-
function,



210

match point is located at y =123 (4,=0.015}, and in
terms of the original mesh, the match point is located at 7.
Consequently, the total number of mesh points is decreased
by 43% by using the embedded-function method.

For convenience, the full-calculation and the embedded-
function methods will subsequently be referred to by FC
and EF, respectively. Figure 4 shows the friction velocity as
a function of x, for various cross-stream locations. Note the
staggered ordinate, which will be used in all subsequent
figures describing the variation of a calculated quantity with
respect to {x;,x;). Both schemes fail to converge at
{x, > 0.95, x,=0). Beyond this point, backflow is expected
and it is generally not possible to continue a marching solu-
tion of the boundary-layer equations without utilizing inter-
active theory {see, for exampie, Ref. [15]); furthermore, the
asymptotic structure described in Section 3 is not expected
to apply within such a flow regime. Composite velocity
profiles spanning the entire thickness of the boundary layer
were constructed in the EF method from (52)-(56). The
streamwise velocity profiles produced by both methods
were found to be virtuaily identical. Selected cross-stream
velocity profiles are shown in Fig. 5, where y* is the
abscissa. Recall that the match point is located at y,i =123
The computed profiles compare very well for large y*, but
a slight discrepancy between the two sets of results may be
noted deep within the wall layer where y* ~ O(1}. This is

4.0

FIG. 5. The cross-siream velocity profile at five selected locations for

the wedge flow: --- full calculation; - - - embedded function. All cross-
stream locations are x,=025. The x, locations are: P, x;=06;
Py, =0T Py, x, =073, Py, x,=08; P;, x, =0.85.
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simply a reflection of the approximate nature of formula
(56) for y* = O(1). Figure 6 shows a plot of the logarithm
of the wall skew angle measured in radians with respect to
{x,, x,). At the leading edge of the flat plate, the flow is
nominally two-dimensional; however, as the wedge is
approached, 6, increases rapidly and the mean flow
becomes increasingly three-dimensional. The results in Figs.
4 and 6 indicate a good agreement in w, and 8,. between
both calculation methods. Figures 7 and 8 show the total
streamwise and cross-stream shear stresses at five selected
locations. It is evident from Fig. 7 that 7,5 is constant across
the wall layer, but close examination of Fig. 8 appears to
suggest that 1,5 is not constant for y* < 120. In particular,
for the plot Ps the value at 3 =120 is about half the value
at the wail. Although t,;=const in the wall layer is
asymptotically valid in the limit Re = o, Fig. 8 shows
that the higher-order effects of pressure gradient are not
negligible at the large but finite Reynolds number under
consideration. For higher Reynolds numbers, the plots in
Fig. 8 would be similar but the abscissa »* =100, for
cxample, would shift progressively to the left and the
asymptotic result ,;=constant for y* < 100 would be
realized.

Previous investigators (see, for example, Ref. [16]) have
suggested that the velocity vector is aligned with the direc-
tron of the wall shear stress across the entire wall layer (ie.,

al/
o 1 . . . 4 ;
0.0 0.2 04 0.6 [0 X:] 1.0
X
FIG. 6. Streamwise variation of the wall skew angle for the wedge flow
for five selected cross-stream locations; .« - full calculation; —— — embedded-
function; assuming collateral wall-layer llow.
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FIG. 7. The streamwise total shear stress at five selected locations. See
Fig. 5 for legend.
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FIG. 8. The cross-stream total shear stress at five selected locations,
See Fig. S for legend. Solid curves are results obtained assuming collateral
wall-layer flow.
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collateral flow). While this is a valid asymptotic result [7]
in the limit Re — oo, significant error may result using such
an approximation at the finite but large Reynolds numbers
encountered in practice and this aspect will now be assessed.
The assumption of collateral flow implies that the pressure-
gradient terms in (41) and (42), which give rise to the
skewing of the velocity, shouid be neglected to obtain

H* (K
K P!

w2 f
g3*82=—‘* 2 log (ﬁ)

fi—fa=
(59)

Furthermore, from (48), the scaled friction velocity and wall
skew angle are now calculated from

. = f2 8 - &2
* (k)log yr +C/ Youlfy

(60)

The calculations for the wedge flow were repeated assuming
collateral flow in the wall layer; it was found that computed
resuits for »_ and §*, as well as the streamwise velocity and
total shear stress profiles did not differ appreciably from
those obtained with the FC method. However, the com-
puted value of . assuming collateral flow is consistently
underpredicted, as shown in Fig. 6, with the difference from
the true value corresponding to the total angle of skew of
the velocity in the wall layer; percentage errors for ,. on the
order of 30% are typical using the collateral flow approach.
Figures 8 and 9 show the cross-stream total shear stress
and velocity profiles, respectively, obtained by assuming
collateral flow in the wall layer, and it is seen that the agree-
ment with the FC method has deteriorated considerably. It
is seen from Figs. & and 9 that the effect of assuming
collateral flow in the wall layer alters the cross-stream flow
all the way to y* ~ 1000, a location which corresponds to
approximately 10 times the thickness of the wall layer. The
importance of including the effects of pressure gradient on
the wall-layer flow was also pointed out in another recent
study [17].

As a second and more challenging example to
demonstrate the applicability of the EF method to the
calculation of bi-directionally skewed cross-stream profiles,
consider the external velocity given by

2e —{rx3)?

T Sil’l(ZTC.’Cl ]

U,=1- (61)

This flow has a symmetry plane at x, =0 and asymptotes to
a uniform flow for |x,| large. Furthermore, it is assumed
that for the external flow: (i) du,/éx, =0as x; — 0, and (i)
the normal component of the vorticity is zero. From the two
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FIG. 9. The cross-stream velocity at five selected locations. Collateral
wall-layer flow is assumed in the embedded-function method. See Fig. 5 for
legend.

conditions above, it may be easily shown [7] that the
metric coefficients can be expressed as

hy=h,=UZT" (62)

From the definitions of K, and K,, in (5), it follows that

au, 4o (w2
- ox, I
au,
O0x,

K, cos(2nx,), (63)

T B
K,= =dx,e "™ 5in(2nx, ).

(64)

Equation (64) indicates that the curvature of the external
streamline is initially positive along 0 < x; < 0.5 and then
negative along 0.5<x,<10; this external field was
constructed to have a change in sign of K, as this appears
to be a necessary requirement for a bi-directionally skewed
cross-stream velocity profile. With the external conditions
specified by (61)-(64), the FC and EF methods were
employed to calculate the boundary-layer flow starting
from a Blasius profile along x,=0. In addition, the
reference quantities used for the wedge flow, as well as the
criteria for transition, were left unchanged.

Figure 10 shows the variation of the wall skew angle as a
function of x, for a selected number of cross-stream loca-
tions. It is evident that the calculated results from the two
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methods are in good agreement. From (64), it is noted that
for a fixed x, location, the maximum, zero, and minmimum
values of K, occur at x; = 0.25, 0.5, and 0.75, respectively.
The wall skew angle follows a similar trend but the
maximum, zero, and minimum are approximately located
at x,=04, 0.6, and 09, respectively. This indicates a
consistent lag in the response of the wall skew angle to the
changing cross-stream pressure gradient in the external
flow. \

Figure 11 shows the cross-stream velocity profile at
various streamwise locations for a fixed cross-stream loca-
tion. Once again, it may be noted that the results obtained
from the FC and EF methods are in good agreement. There
are some noteworthy features in these plots and which merit
discussion. At the first streamwise location, x, =04, the
cross-stream velocity profile skews in the positive x, direc-
tion throughout the extent of the boundary-layer, reflecting
the fact that the curvature of the external streamline is
positive. Farther downstream, at x, =0.6, the magnitude
of the cross-stream velocity decreases as a result of a
decreasing curvature in the external streamline. At the next
two locations, the cross-stream velocity profile is bi-direc-
tionally skewed which reflects the change in the sign of the
curvature of the external streamline. Since the inertia of
the fluid in the wall layer is smaller than that in the outer
layer, the velocity profile in the wall layer responds to the

Q =
21 Xy, =1.00
Q
T
\/xz =045
"

-
&1

- X, =0.35
ol
1

- %y =025
‘|j ]

. xp=0.15
?‘ T T T T T

0.0 0.2 04 0.6 o8 1.0

B

FIG. 10. Streamwise variation of the wall skew angle at five cross-
stream locations: --- full calculation; ——— embedded function.
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FIG. 11. The cross-stream velocity at five selected locations: --- full

calculation; - - - embedded function method. All cross-stream locations

at x,=025 and the streamwise locations are given by: P, x,=04;
P,.x;=06; Py, v, =065 P,, x,=07, P, x,=09.

changing external environment relatively more rapidly.
Consequently, for the two locations under discussion, the
velocity in the wall layer skews in the negative x, direction,
but the velocity in the outer layer “remembers” its upstream
history and continues to skew in the positive x, direction.
As the flow continues in the downstream direction, the
changes in the wall-layer flow permeate out toward the
boundary-layer edge and the maximum in the positive
cross-stream velocity continually decreases. At the stream-
wise location of the last plot, the cross-stream velocity is
once again unidirectionally skewed, but now in the negative
X, direction, implying that the outer layer has now
“forgotten” the positive curvature of the external streamline
farther upstream.

7. CONCLUSIONS

The embedded-function method utilizes about haif as
many mesh points as are normally required in a conven-
tional scheme which computes the flow all the way to the
wall. The computed results (particularly the wall skew angle
and the cross-stream velocity and shear stress profiles) were
obtained by using the embedded-function method at a
fraction of the computational cost and yet agree well with
those obtained by the conventional scheme. It was shown
that the assumption of collateral flow in the wall layer leads
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to inaccurate results in the prediction of the wall skew angle
and the cross-stream velocity and shear stress profiles.
Furthermore, it was demonstrated that the present
embedded-function method is capable of calculating
boundary-layer flows in which the cross-stream velocity
profile is bi-directionally skewed.

It should be noted that the present methodology applies
to attached turbulent flows near walls and, in principle, is
readily incorporated in implicit schemes for the solution
of the Reynolds-averaged Navier-Stokes equations, For
attached turbulent boundary layers, the two-layer structure
utilized here and the validity of the turbulence models
represented by (32) are well documented. The validity of
such models in and near backflow zones and regions of
separation is questionable and turbulence models for these
regimes will probably be controversial for some time. At the
same time, if a two-layer turbulence model is adopted for
separated flow, the methodology could, in principle, be
extended to this situation.

APPENDIX

The variable G and coefficients A4; in the governing
equations (23)-(25) are given by

y —WZ" W ey,
oy FTULh éxy”
(A.1)
W (M"+A 4
8_Ar.\‘h] axl ’ ’
and by the following
Three-Dimensional Plane of symmetry
Hy 1 auz
G=-—= = — A2
U(, “ U('h2 ax! x3=0 ( )
W
A, =— A,=0 (A3)
hy
A,=A,= WK, A,= WK, A=W  (Ad)
As=A4A,= WK, As=2WK,, Ac=0 (A.5)
W a4,
= — A=W, A6
9 thz axl 9 ( )
where
1 8K
W=U,42, Ky=—=—2 . A.
e ) 2 ’12 axz =0 ( 7)
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